Supplementary material 2: Table of studies excluded at full text assessment

Cancer studies

Reference	Reason for exclusion	Comments
Ahn JS, Ebrahimian S, McDermott S, Lee S, Naccarato L, Di Capua JF, <i>et al.</i> Association of Artificial Intelligence-Aided Chest Radiograph Interpretation with Reader Performance and Efficiency. <i>JAMA Network Open</i> 2022; 5(8) :E2229289. http://dx.doi.org/10.1001/jamanetworkopen.2022.29289	Population	Software eligible. Radiologist + others using AI and without AI (4 weeks apart), CXR were from two hospital databases (one is an intensive care database) and no details of the referral route of participants or prior cancer status, included nodules as an outcome
Ajmera P, Pant R, Seth J, Ghuwalewala S, Kathuria S, Rathi S, <i>et al.</i> Deep- learning-based automatic detection of pulmonary nodules from chest radiographs. <i>medRxiv</i> 2022; 23 . http://dx.doi.org/10.1101/2022.06.21.22276691	Intervention	Not a named intervention, CXRs were from tertiary setting with no further details
Aoki T, Oda N, Yamashita Y, Yamamoto K, Korogi Y. Usefulness of computerized method for lung nodule detection on digital chest radiographs using similar subtraction images from different patients. <i>Eur J Radiol</i> 2012; 81 (5):1062-7. http://dx.doi.org/10.1016/j.ejrad.2011.02.010	Intervention	Software not stated, doesn't appear to be AI
Bae K, Oh DY, Yun ID, Jeon KN. Bone Suppression on Chest Radiographs for Pulmonary Nodule Detection: Comparison between a Generative Adversarial Network and Dual-Energy Subtraction. <i>Korean Journal of Radiology</i> 2022; 23 (1):139-49. http://dx.doi.org/10.3348/kjr.2021.0146	Intervention	Not a named intervention (and no AI component)
Baltruschat IM, Nickisch H, Grass M, Knopp T, Saalbach A. Comparison of Deep Learning Approaches for Multi-Label Chest X-Ray Classification. <i>Sci Rep</i> 2019; 9 (1):6381. http://dx.doi.org/10.1038/s41598-019-42294-8	Intervention	Not a named intervention. Also no radiologist and population not reported
Berbaum KS, Krupinski EA, Schartz KM, Caldwell RT, Madsen MT, Hur S, <i>et al.</i> The influence of a vocalized checklist on detection of multiple abnormalities in chest radiography. <i>Acad Radiol</i> 2016; 23(4) :413-20. http://dx.doi.org/10.1016/j.acra.2015.12.017	Intervention	Not a named intervention. Also simulated nodules on CXRs
Cha MJ, Chung MJ, Lee JH, Lee KS. Performance of Deep Learning Model in Detecting Operable Lung Cancer With Chest Radiographs. <i>J Thorac Imaging</i> 2019; 34 (2):86-91. http://dx.doi.org/10.1097/RTI.000000000000388	Intervention	Software not stated; CXR from database, population details and referral not clear
Chen B, Li J, Guo X, Lu G. DualCheXNet: dual asymmetric feature learning for thoracic disease classification in chest X-rays. <i>Biomed Signal Process Control</i> 2019; 53 (no pagination) . http://dx.doi.org/10.1016/j.bspc.2019.04.031	Intervention	Not a named intervention (DualCheXNet), CXRs from a database but referral route of participants not known, validation study for the algorithm
Chen S, Han Y, Lin J, Zhao X, Kong P. Pulmonary nodule detection on chest	Intervention	Not a specified software, paper on development of software

radiographs using balanced convolutional neural network and classic candidate detection. <i>Artif Intell Med</i> 2020; 107 :101881. http://dx.doi.org/10.1016/j.artmed.2020.101881		
Chen S, Yao L, Chen B. A parameterized logarithmic image processing method with Laplacian of Gaussian filtering for lung nodule enhancement in chest radiographs. <i>Med Biol Eng Comput</i> 2016; 54 (11):1793-806.	Intervention	Not a named intervention. CXRs from a database, referral route not reported, no radiologist input reported, also investigated another non named intervention, validation study for the algorithm
Chetan MR, Dowson N, Price NW, Ather S, Nicolson A, Gleeson FV. Developing an understanding of artificial intelligence lung nodule risk prediction using insights from the Brock model. <i>Eur Radiol</i> 2022; 32(8) :5330-8. http://dx.doi.org/10.1007/s00330-022-08635-4	Intervention	CT scan AI, also screening population
Cho Y, Kim YG, Lee SM, Seo JB, Kim N. Reproducibility of abnormality detection on chest radiographs using convolutional neural network in paired radiographs obtained within a short-term interval. <i>Sci Rep</i> 2020; 10 (1):17417. http://dx.doi.org/10.1038/s41598-020-74626-4	Intervention	Not a named intervention
Choi S, Lee O, Kim M. The cut-off values for auto-detection of lung cancer in chest radiography: An example using an unsupervised method. <i>Biomedical Engineering - Applications, Basis and Communications</i> 2012; 24(6) :525-36. http://dx.doi.org/10.4015/S1016237212500482	Intervention	Not a named intervention ('Principle Component Analysis' and 'Texture Information Analysis'), referral route of participants not known
Choi SY, Park S, Kim M, Park J, Choi YR, Jin KN. Evaluation of a deep learning- based computer-aided detection algorithm on chest radiographs: Case-control study. <i>Medicine</i> 2021; 100 (16):e25663. http://dx.doi.org/10.1097/MD.00000000025663	Population	Software eligible. Population referral route not reported but included health screening unit or oncology unit with normal CXRs and not described where those with nodules came from except 'consecutive' cases which were abnormal cases with localized consolidation selected from subjects who visited the emergency department or respiratory medicine
De Boo DW, van Hoorn F, van Schuppen J, Schijf L, Scheerder MJ, Freling NJ, <i>et al.</i> Observer training for computer-aided detection of pulmonary nodules in chest radiography. <i>Eur Radiol</i> 2012; 22 (8):1659-64. http://dx.doi.org/10.1007/s00330-012-2412-7	Intervention	Software: IQQA Chest, EDDA Technology, Princeton Junction, NJ, USA
Dellios N, Teichgraeber U, Chelaru R, Malich A, Papageorgiou IE. Computer- aided Detection Fidelity of Pulmonary Nodules in Chest Radiograph. <i>J Clin</i> <i>Imaging Sci</i> 2017; 7 :8. http://dx.doi.org/10.4103/jcis.JCIS_75_16	Intervention	Riverain manufacturer, but software includes SoftView (bone suppression imaging) and OnGuard (nodule detection) possible version of ClearRead Detect; population with known pulmonary lesions
Dissez G, Tay N, Dyer T, Tam M, Dittrich R, Doyne D, et al. Enhancing Early Lung Cancer Detection on Chest Radiographs with Al-assistance: A Multi-Reader Study [preprint]. arXiv.org; 2022. URL:	Population	Software eligible. Was AI+clinician vs clinician. Population from retrospective CXRs collected in one hospital during 2020, referral route not reported

https://arxiv.org/ftp/arxiv/papers/2208/2208.14742.pdf (Accessed 3 January 2023).		
Do Q, Seo W, Shin CW. Automatic algorithm for determining bone and soft- tissue factors in dual-energy subtraction chest radiography. <i>Biomed Signal</i> <i>Process Control</i> 2023; Part 2. 80 (no pagination) . http://dx.doi.org/10.1016/j.bspc.2022.104354	Intervention	Not a named intervention, also simulation study
Dorri Giv M, Haghighi Borujeini M, Seifi Makrani D, Dastranj L, Yadollahi M, Semyari S, et al. Lung Segmentation using Active Shape Model to Detect the Disease from Chest Radiography. <i>Journal of Biomedical Physics & Engineering</i> 2021; 11 (6):747-56. http://dx.doi.org/10.31661/jbpe.v0i0.2105-1346	Intervention	Not a specified software, query AI, population from database no details
Dyer T, Dillard L, Harrison M, Morgan TN, Tappouni R, Malik Q, <i>et al.</i> Diagnosis of normal chest radiographs using an autonomous deep-learning algorithm. <i>Clin Radiol</i> 2021; 76 (6):473.e9e15. http://dx.doi.org/10.1016/j.crad.2021.01.015	Population	Not a named intervention (authors employed by behold.ai') but population also not clear (includes A&E, GP, outpatient)
Dyer T, Smith J, Dissez G, Tay N, Malik Q, Morgan TN, <i>et al. Robustness of an Artificial Intelligence Solution for Diagnosis of Normal Chest X-Rays [preprint].</i> arXiv.org; 2022. URL: https://arxiv.org/ftp/arxiv/papers/2209/2209.09204.pdf (Accessed 3 January 2023).	Intervention	Software eligible but stand-alone AI. Study was AI to find normal CXRs. CXRs from retrospective collection and chosen to represent a diverse dataset of NHS patients and care settings. AI vs clinician. No relevant outcomes
Endo K, Kaneko A, Horiuchi Y, Kasuga N, Ishizaki U, Sakai S. Detectability of pulmonary nodules on chest radiographs: bone suppression versus standard technique with single versus dual monitors for visualization. <i>Japanese Journal of Radiology</i> 2020; 38 (7):676-82. http://dx.doi.org/10.1007/s11604-020-00952-2	Intervention	Bone suppression imaging using software developed with a deep-learning pattern recognition algorithm
Fischer G, De Silvestro A, Muller M, Frauenfelder T, Martini K. Computer-Aided Detection of Seven Chest Pathologies on Standard Posteroanterior Chest X-Rays Compared to Radiologists Reading Dual-Energy Subtracted Radiographs. <i>Acad</i> <i>Radiol</i> 2022; 29 (8):e139-e48. http://dx.doi.org/10.1016/j.acra.2021.09.016	Population	Inpatients and outpatients, most had CXR pre-surgery so unlikely 90% were referred (and Intervention not an adjunct to clinician)
Ghali R, Akhloufi MA. ARSeg: An Attention RegSeg Architecture for CXR Lung Segmentation. Paper presented at: 2022 IEEE 23rd International Conference on Information Reuse and Integration for Data Science (IRI); San Diego, CA, USA. URL: https://doi.org/10.1109/IRI54793.2022.00068	Intervention	Not eligible software
Govindarajan A, Govindarajan A, Tanamala S, Chattoraj S, Reddy B, Agrawal R, <i>et al.</i> Role of an Automated Deep Learning Algorithm for Reliable Screening of Abnormality in Chest Radiographs: A Prospective Multicenter Quality Improvement Study. <i>Diagnostics</i> 2022; 12 (11):07. http://dx.doi.org/10.3390/diagnostics12112724	Population	qXR but stand alone, population age > 6 years, subgroup results reported but only for normal/abnormal (not nodule), referral status unknown, states 'routine screening'
Guo W, Li Q, Boyce SJ, McAdams HP, Shiraishi J, Doi K, <i>et al</i> . A computerized scheme for lung nodule detection in multiprojection chest radiography. <i>Med</i>	Intervention	Software not specified, population from database no details

	T	
<i>Phys</i> 2012; 39 (4):2001-12. http://dx.doi.org/10.1118/1.3694096		
Hao R, Qiang Z, Qiang Y, Ge L, Zhao J. Automatic diagnosis of pulmonary nodules	British library	
using a hierarchical extreme learning machine model. Int J Bio-Inspired Comput	not available	
2018; 11 (3):192–201. http://dx.doi.org/10.1504/ijbic.2018.091748		
Homayounieh F, Digumarthy S, Ebrahimian S, Rueckel J, Hoppe BF, Sabel BO, et	Population	Software eligible. Population referral route not reported
al. An Artificial Intelligence-Based Chest X-ray Model on Human Nodule		(retrospective). Was AI+clinician vs clinician
Detection Accuracy From a Multicenter Study. JAMA Network Open		
2021; 4 (12):e2141096. http://dx.doi.org/10.1001/jamanetworkopen.2021.41096		
Htike ZZ, Naing WYN, Win SL, Khan S. Computer-Aided Diagnosis of Pulmonary	Intervention	Not a named intervention ('proposed system'), CXRs
Nodules from Chest X-Rays Using Rotation Forest. Paper presented at:		from a database so referral route of participants not
Proceedings of the 2014 International Conference on Computer and		known
Communication Engineering. URL: https://doi.org/10.1109/ICCCE.2014.38		
Huang X, Fang Y, Lu M, Yan F, Yang J, Xu Y. Dual-ray net: Automatic diagnosis of	Intervention	Not a named intervention, also CXRs from two
thoracic diseases using frontal and lateral chest x-rays. Journal of Medical		databases but referral route of participants not known,
Imaging and Health Informatics 2020; 10(2) :348-55.		validation study for the algorithm
http://dx.doi.org/10.1166/jmihi.2020.2901		
Hwang EJ, Park S, Jin KN, Kim JI, Choi SY, Lee JH, et al. Development and	Intervention	Software not stated; CXR datasets from 4 hospitals,
Validation of a Deep Learning-Based Automated Detection Algorithm for Major		referral and details unclear
Thoracic Diseases on Chest Radiographs. JAMA Network Open		
2019; 2 (3):e191095. http://dx.doi.org/10.1001/jamanetworkopen.2019.1095		
Jang S, Song H, Shin YJ, Kim J, Lee KW, Lee SS, et al. Deep Learning-based	Population	Eligible software (Lunit Insight); Population referral
Automatic Detection Algorithm for Reducing Overlooked Lung Cancers on Chest		status unclear, people with lung cancer and cancer
Radiographs. Radiology 2020;296(3):652-61.		visible on CXR prior to diagnosis, unclear if
http://dx.doi.org/10.1148/radiol.2020200165		symptomatic or incidental, control group normal CXR,
		reason for CXR unclear. AI+clinician vs AI
Jin KN, Kim EY, Kim YJ, Lee GP, Kim H, Oh S, et al. Diagnostic effect of artificial	Population	Software eligible. Population those seen in respiratory
intelligence solution for referable thoracic abnormalities on chest radiography: a		outpatients for any lung diseases, nodule/cancer
multicenter respiratory outpatient diagnostic cohort study. Eur Radiol		included, no details of referral route and results include
2022; 32 (5):3469-79. http://dx.doi.org/10.1007/s00330-021-08397-5		any identifiable lesion (nodules or masses, lung
		consolidation, and pneumothorax) not nodule/cancer
	T ()	specifically
Kao EF, Liu GC, Lee LY, Tsai HY, Jaw TS. Computer-aided detection system for	Intervention	Not a named intervention ('homemade CAD'), referral
chest radiography: Reducing report turnaround times of examinations with		route of participants not known
abnormalities. Acta Radiol 2015; 56(6) :696-701.		
http://dx.doi.org/10.1177/0284185114538017		
Kaviani P, Digumarthy SR, Bizzo BC, Reddy B, Tadepalli M, Putha P, et al.	Population	Population not described, CXRs taken from a database
Performance of a Chest Radiography AI Algorithm for Detection of Missed or		and no information that these would be primary care

Mislabeled Findings: A Multicenter Study. <i>Diagnostics</i> 2022; 12 (9):28. http://dx.doi.org/10.3390/diagnostics12092086		referrals, intervention not an adjunct to clinician
Kaviani P, Kalra MK, Digumarthy SR, Gupta RV, Dasegowda G, Jagirdar A, <i>et al.</i> Frequency of Missed Findings on Chest Radiographs (CXRs) in an International, Multicenter Study: Application of AI to Reduce Missed Findings. <i>Diagnostics</i> 2022; 12 (10):30. http://dx.doi.org/10.3390/diagnostics12102382	Population	Software eligible (Qure.ai). Population not described, not clear if referred with symptoms but only those with 'normal' CXRs were used, intervention not an adjunct to clinician
KCT. A single-center, randomized, crossover and retrospective pivotal trial to evaluate the efficacy of VUNO Med - Chest X-ray in screening of abnormalities on chest radiograph. WHO ICTRP; 2019. URL: https://trialsearch.who.int/Trial2.aspx?TrialID=KCT0004147 (Accessed 20 January 2023).	Population	Software eligible. Screening population. Ongoing study no results
KCT. Diagnosis of lung nodule and lung cancer on screening chest radiographs: comparative clinical trial for evaluation of artificial intelligence-integrated PACS versus conventional PACS. WHO ICTRP; 2020. URL: https://trialsearch.who.int/Trial2.aspx?TrialID=KCT0005051 (Accessed 20 January 2023).	Population	Software eligible. Screening population (those with respiratory symptoms when CXR performed excluded). Ongoing study no results
Ke Q, Zhang J, Wei W, Połap D, Woźniak M, Kośmider L, <i>et al.</i> A neuro-heuristic approach for recognition of lung diseases from X-ray images. <i>Expert Syst Appl</i> 2019; 126 (C):218–32. http://dx.doi.org/10.1016/j.eswa.2019.01.060	Intervention	Not a named intervention, CXRs from 3 databases but referral route of participants not known, validation study for the algorithm
Kim EY, Kim YJ, Choi WJ, Jeon JS, Kim MY, Oh DH, <i>et al.</i> Concordance rate of radiologists and a commercialized deep-learning solution for chest X-ray: Real-world experience with a multicenter health screening cohort. <i>PLoS ONE</i> [<i>Electronic Resource</i>] 2022; 17 (2):e0264383. http://dx.doi.org/10.1371/journal.pone.0264383	Population	Health screening population, no description of referral route or reason for CXR other than for a screening test, outcomes were broad groups of thoracic abnormalities (inactive, insignificant abnormal, and significant abnormal lesions)
Kim H, Park CM, Goo JM. Test-retest reproducibility of a deep learning-based automatic detection algorithm for the chest radiograph. <i>Eur Radiol</i> 2020; 30 (4):2346-55. http://dx.doi.org/10.1007/s00330-019-06589-8	Population	Eligible software, Population undergoing pre-op CXR, comparator not eligible
Kligerman S, Cai L, White CS. The effect of computer-aided detection on radiologist performance in the detection of lung cancers previously missed on a chest radiograph. <i>J Thorac Imaging</i> 2013; 28 (4):244-52. http://dx.doi.org/10.1097/RTI.0b013e31826c29ec	Intervention	OnGuard (Riverain)+ radiologist vs radiologist alone, population were lung cancer previously missed on CXR (CXR from before diagnosis) - referral status unknown, unclear if incidental or symptomatic
Koo YH, Shin KE, Park JS, Lee JW, Byun S, Lee H. Extravalidation and reproducibility results of a commercial deep learning-based automatic detection algorithm for pulmonary nodules on chest radiographs at tertiary hospital. <i>J</i> <i>Med Imaging Radiat Oncol</i> 2021; 65 (1):15-22. http://dx.doi.org/10.1111/1754- 9485.13105	Population	Software eligible. Population referral route not reported but from a tertiary centre and included CXRs with known nodules and without, the prevalence of nodules was 46.5%, includes AI+clinician vs AI alone

Laksshmi KSG, Umagandhi R. False Positive Reduction Based on Anatomical	Intervention	Not eligible software
Characterization Using Deep Learning Neural Network in Lung Nodule Detection.		
<i>European Journal of Molecular and Clinical Medicine</i> 2020; 7(8) :5296-303.		
Lee KH, Goo JM, Park CM, Lee HJ, Jin KN. Computer-aided detection of	Intervention	CAD: IQQA-Chest, EDDA Technology, Princeton
malignant lung nodules on chest radiographs: effect on observers' performance.		Junction, NJ, USA; population: retrospective selection of
Korean Journal of Radiology 2012; 13 (5):564-71.		malignant nodules and normal cases
http://dx.doi.org/10.3348/kjr.2012.13.5.564		
Lee YW, Huang SK, Chang RF. CheXGAT: A disease correlation-aware network for	Intervention	Not eligible software
thorax disease diagnosis from chest X-ray images. Artif Intell Med 2022;132 (no		
pagination). http://dx.doi.org/10.1016/j.artmed.2022.102382		
Li F, Engelmann R, Armato SG, 3rd, MacMahon H. Computer-aided nodule	Intervention	ClearRead Detect (eligible) and SoftView v2.4 (bone
detection system: results in an unselected series of consecutive chest		suppression imaging), not with radiologist; population
radiographs. Acad Radiol 2015;22(4):475-80.		unclear - had CT on same day, outcomes for nodule
http://dx.doi.org/10.1016/j.acra.2014.11.008		detection but comparator is radiologist+CXR+CT
Li X, Shen L, Luo S. A Solitary Feature-Based Lung Nodule Detection Approach for	Intervention	Not a named intervention. CXRs from two databases and
Chest X-Ray Radiographs. IEEE Journal of Biomedical & Health Informatics		referral route not reported, no radiologist reported,
2018; 22 (2):516-24. http://dx.doi.org/10.1109/JBHI.2017.2661805		validation study of the algorithm
Li X, Shen L, Xie X, Huang S, Xie Z, Hong X, et al. Multi-resolution convolutional	Intervention	Population from databases, no details of referral;
networks for chest X-ray radiograph based lung nodule detection. Artif Intell		software not named
Med 2020;103:101744. http://dx.doi.org/10.1016/j.artmed.2019.101744		
Liang CH, Liu YC, Wu MT, Garcia-Castro F, Alberich-Bayarri A, Wu FZ. Identifying	Intervention	Population referral unclear, software not eligible
pulmonary nodules or masses on chest radiography using deep learning:		(QUIBIM)
external validation and strategies to improve clinical practice. Clin Radiol		
2020; 75 (1):38-45. http://dx.doi.org/10.1016/j.crad.2019.08.005		
Liu H, Wang L, Nan Y, Jin F, Wang Q, Pu J. SDFN: Segmentation-based deep	Intervention	From known SR not in Endnote. Not a named
fusion network for thoracic disease classification in chest X-ray images. Comput		intervention (DenseNet), CXRs from databases, referral
Med Imaging Graph 2019; 75 :66-73.		route of participants not known, validation study for the
http://dx.doi.org/10.1016/j.compmedimag.2019.05.005		algorithm
Louati H, Louati A, Bechikh S, Said LB. Design and Compression Study for	Intervention	Not a named intervention, also no details of where CXRs
Convolutional Neural Networks Based on Evolutionary Optimization for Thoracic		were from, validation study for the algorithm
X-Ray Image Classification. Paper presented at: Computational Collective		
Intelligence: 14th International Conference, ICCCI 2022, Hammamet, Tunisia,		
September 28–30, 2022, Proceedings; Hammamet, Tunisia. URL:		
https://doi.org/10.1007/978-3-031-16014-1_23		
Majkowska A, Mittal S, Steiner DF, Reicher JJ, McKinney SM, Duggan GE, et al.	Intervention	Not a named intervention. Referral route unclear but one
Chest radiograph interpretation with deep learning models: Assessment with		database consecutive inpatient and outpatient images and

radiologist-adjudicated reference standards and population-adjusted evaluation. <i>Radiology</i> 2020; 294(2) :421-31.		the other all CXRS from multiple different hospitals
Malik H, Anees T, Mui Zzud D. BDCNet: multi-classification convolutional neural network model for classification of COVID-19, pneumonia, and lung cancer from chest radiographs. <i>Multimedia Systems</i> 2022; 28 (3):815-29. http://dx.doi.org/10.1007/s00530-021-00878-3	Intervention	Compares 4 named ineligible software
Martinez-Machado E, Perez-Diaz M, Orozco-Morales R. Automated System for the Detection of Lung Nodules. Paper presented at: Progress in Artificial Intelligence and Pattern Recognition: 7th International Workshop on Artificial Intelligence and Pattern Recognition, IWAIPR 2021, Havana, Cuba, October 5–7, 2021, Proceedings; Havana, Cuba. URL: https://doi.org/10.1007/978-3-030- 89691-1 33	Intervention	Not a named intervention. Retrospective database of CXRs with no discussion of referral route of pts, and unclear if radiologist input, validation study of the algorithm
Mathew TE, Sugelanandh O. Lung Cancer Classification Using Extreme-Anfiswith Red Fox Optimization Algorithm. <i>Neuroquantology</i> 2022; 20(6) :1839-46. http://dx.doi.org/10.14704/ng.2022.20.6.NQ22183	Intervention	Not a named intervention, also no details of where CXRs were from, validation study for the algorithm
Mazzone PJ, Obuchowski N, Phillips M, Risius B, Bazerbashi B, Meziane M. Lung cancer screening with computer aided detection chest radiography: design and results of a randomized, controlled trial. <i>PLoS ONE [Electronic Resource]</i> 2013; 8 (3):e59650. http://dx.doi.org/10.1371/journal.pone.0059650	Intervention	OnGuard 5.0 (Riverain), vs placebo CXR (RCT), screening of a high-risk population
Meraj T, Rauf HT, Zahoor S, Hassan A, Lali MI, Ali L, <i>et al</i> . Lung nodules detection using semantic segmentation and classification with optimal features. <i>Neural Comput Appl</i> 2021; 33 (17):10737–50. http://dx.doi.org/10.1007/s00521-020-04870-2	Intervention	CT images
Messerli M, Kluckert T, Knitel M, Rengier F, Warschkow R, Alkadhi H, <i>et al.</i> Computer-aided detection (CAD) of solid pulmonary nodules in chest x-ray equivalent ultralow dose chest CT - first in-vivo results at dose levels of 0.13mSv. <i>Eur J Radiol</i> 2016; 85 (12):2217-24. http://dx.doi.org/10.1016/j.ejrad.2016.10.006	Intervention	Not CXR
Meziane M, Mazzone P, Novak E, Lieber ML, Lababede O, Phillips M, <i>et al.</i> A comparison of four versions of a computer-aided detection system for pulmonary nodules on chest radiographs. <i>J Thorac Imaging</i> 2012; 27 (1):58-64. http://dx.doi.org/10.1097/RTI.0b013e3181f240bc	Intervention	Compares 4 generations of CAD software: RapidScreen1.1andOnGuard3.0, 4.0, and5.0 (RiverainMedical)
Miyoshi T, Yoshida J, Aramaki N, Matsumura Y, Aokage K, Hishida T, <i>et al.</i> Effectiveness of Bone Suppression Imaging in the Detection of Lung Nodules on Chest Radiographs: Relevance to Anatomic Location and Observer's Experience. <i>J Thorac Imaging</i> 2017; 32 (6):398-405. http://dx.doi.org/10.1097/RTI.00000000000299	Intervention	Not a named intervention and not AI. Also referral route of participants CXRs not reported

Multicenter, multi-reader, multicase (MRMC) study on the performance of AI for pulmonary nodule detection on chest radiographs with accompanying chest CT for ground trothing [Ongoing study. AIC data from CS]. In.,	Population	Software eligible. AIC data from CS. Ongoing study. Was AI+clinician vs clinician. Referral route of CXRs unclear were from academic health centres with CT on the same day
Nam JG, Hwang EJ, Kim DS, Yoo SJ, Choi H, Goo JM, <i>et al</i> . Undetected Lung Cancer at Posteroanterior Chest Radiography: Potential Role of a Deep Learning- based Detection Algorithm. <i>Radiology Cardiothoracic Imaging</i> 2020; 2 (6):e190222. http://dx.doi.org/10.1148/ryct.2020190222	Population	Software eligible. CXRs from people with confirmed lung CA initially undetected on CXR - unclear referral route or if CXR for symptoms or no symptoms, also unclear where the 'normal' X-rays are from, is algorithm + radiologist vs radiologist
Nam JG, Kim M, Park J, Hwang EJ, Lee JH, Hong JH, <i>et al.</i> Development and validation of a deep learning algorithm detecting 10 common abnormalities on chest radiographs. <i>Eur Respir J</i> 2021; 57 (5). http://dx.doi.org/10.1183/13993003.03061-2020	Population	Software named as DLAD-10, company submission states is INSIGHT. CXRs from retrospective databases, referral route unknown, but had CT on the same day. Also simulation validation from CXRs from emergency department CXRs. Intervention looking at 10 different lung conditions. Only the simulation validation set was AI+clinician vs clinician.
Nam JG, Park S, Hwang EJ, Lee JH, Jin KN, Lim KY, <i>et al.</i> Development and Validation of Deep Learning-based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs. <i>Radiology</i> 2019; 290 (1):218-28. http://dx.doi.org/10.1148/radiol.2018180237	Intervention	Funded by Lunit but software not stated; retrospective data set, population and referral unclear, comparison not eligible (for nodule detection observers asked if decision changed with results of software)
Napoleon D, Kalaiarasi I. Classifying Lung Cancer as Benign and Malignant Nodule Using ANN of Back-Propagation Algorithm and GLCM Feature Extraction on Chest X-Ray Images. <i>Wirel Pers Commun</i> 2022; 126 (1):167–95. http://dx.doi.org/10.1007/s11277-022-09594-1	Intervention	Not a named intervention, also CXRs with known abnormalities to distinguish between malignant and benign with no details of referral route
Nasser AA, Akhloufi MA. Chest Diseases Classification Using CXR and Deep Ensemble Learning. Paper presented at: Proceedings of the 19th International Conference on Content-based Multimedia Indexing; Graz, Austria. URL: https://doi.org/10.1145/3549555.3549581).	Intervention	Not a named intervention, also not lung cancer or nodules
Nasser AA, Akhloufi MA. Classification of CXR Chest Diseases by Ensembling Deep Learning Models. Paper presented at: 2022 IEEE 23rd International Conference on Information Reuse and Integration for Data Science (IRI); San Diego, CA, USA. URL: https://doi.org/10.1109/IRI54793.2022.00062	Intervention	Not a named intervention, also not lung cancer or nodules
NCT. xrAI - Improving Quality and Efficiency in Chest Radiograph Interpretation. ClinicalTrials.gov; 2019. URL: https://clinicaltrials.gov/show/NCT04153045 (Accessed 20 January 2023).	Intervention	Not a named intervention, study completed but no results posted
NCT. xrAI - Improving Quality and Efficiency in Chest Radiograph Interpretation by Radiologists. ClinicalTrials.gov; 2020. URL:	Duplicate	Duplicate

https://clinicaltrials.gov/show/NCT04221100 (Accessed 20 January 2023).		
Novak RD, Novak NJ, Gilkeson R, Mansoori B, Aandal GE. A comparison of computer-aided detection (CAD) effectiveness in pulmonary nodule identification using different methods of bone suppression in chest radiographs. <i>J Digit Imaging</i> 2013; 26 (4):651-6. http://dx.doi.org/10.1007/s10278-012-9565-4	Intervention	ClearRead Detect (eligible) but unclear if with radiologist, comparison is other CAD image types; Patients with pulmonary nodules confirmed by CT or pathology-proven CA selected, and negative cases selected, referral status of all unclear
Park S, Lee SM, Lee KH, Jung KH, Bae W, Choe J, <i>et al.</i> Deep learning-based detection system for multiclass lesions on chest radiographs: comparison with observer readings. <i>Eur Radiol</i> 2020; 30 (3):1359-68. http://dx.doi.org/10.1007/s00330-019-06532-x	Intervention	Unclear if referred from primary care, software not named and not as adjunct
Pesce E, Joseph Withey S, Ypsilantis PP, Bakewell R, Goh V, Montana G. Learning to detect chest radiographs containing pulmonary lesions using visual attention networks. <i>Med Image Anal</i> 2019; 53 :26-38. http://dx.doi.org/10.1016/j.media.2018.12.007	Intervention	Software not stated; population unclear
Peters AA, Decasper A, Munz J, Klaus J, Loebelenz LI, Hoffner MKM, <i>et al.</i> Performance of an AI based CAD system in solid lung nodule detection on chest phantom radiographs compared to radiology residents and fellow radiologists. <i>J</i> <i>Thorac Dis</i> 2021; 13 (5):2728-37. http://dx.doi.org/10.21037/jtd-20-3522	Population	Simulation study
Pham HH, Le TT, Tran DQ, Ngo DT, Nguyen HQ. Interpreting chest X-rays via CNNs that exploit hierarchical disease dependencies and uncertainty labels. <i>Neurocomputing</i> 2021; 437 :186-94. http://dx.doi.org/10.1016/j.neucom.2020.03.127	Intervention	Not a named intervention, also CXRs from a database but referral route of participants not known, validation study for the algorithm
Pooch EHP, Alva TAP, Becker CDL. A Deep Learning Approach for Pulmonary Lesion Identification in Chest Radiographs. Paper presented at: Intelligent Systems: 9th Brazilian Conference, BRACIS 2020, Rio Grande, Brazil, October 20– 23, 2020, Proceedings, Part I; Rio Grande, Brazil. URL: https://doi.org/10.1007/978-3-030-61377-8_14	Intervention	Not a named intervention, also CXRs from a database but referral route of participants not known, validation study for the algorithm
Putha P, Tadepalli M, Reddy B, Raj T, Chiramal JA, Govil S, et al. Can artificial intelligence reliably report chest x-rays?: Radiologist validation of an algorithm trained on 2.3 million x-rays [Preprint]. arXiv.org; 2018. URL: https://arxiv.org/pdf/1807.07455.pdf (Accessed 4 January 2023).	Intervention	Software not named, CXRs from databases including participants from inpatient and outpatient and no route of referral known, validation study for the algorithm to identify numerous abnormalities, radiologist vs AI only for nodules
Rajagopalan K, Babu S. The detection of lung cancer using massive artificial neural network based on soft tissue technique. <i>BMC Med Inform Decis Mak</i> 2020; 20 (1):282. http://dx.doi.org/10.1186/s12911-020-01220-z	Intervention	Not a named intervention
Rajpurkar P, Irvin J, Ball RL, Zhu K, Yang B, Mehta H, et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt	Intervention	CheXNeXT, training and validation study using dataset (ChestX-ray-14)no details

	T	
algorithm to practicing radiologists. <i>PLoS Medicine / Public Library of Science</i>		
2018; 15 (11):e1002686. http://dx.doi.org/10.1371/journal.pmed.1002686	T (
Ridder K, Preuhs A, Mertins A, Joerger C. Routine Usage of AI-based Chest X-ray	Intervention	Software eligible but standalone. No details of where
Reading Support in a Multi-site Medical Supply Center [Preprint]. arXiv.org;		CXRs were from, abstract only, no comparator
2022. URL: https://arxiv.org/ftp/arxiv/papers/2210/2210.10779.pdf (Accessed 3		
January 2023).	T (
Saba T. Automated lung nodule detection and classification based on multiple	Intervention	Not CXR (CT)
classifiers voting. <i>Microsc Res Tech</i> 2019; 82 (9):1601-9.		
http://dx.doi.org/10.1002/jemt.23326	T ()	
Samei E, Majdi-Nasab N, Dobbins JT, 3rd, McAdams HP. Biplane correlation	Intervention	Not a named intervention, simulated cases and some human cases but no details of where from
imaging: a feasibility study based on phantom and human data. J Digit Imaging		numan cases but no details of where from
2012; 25 (1):137-47. http://dx.doi.org/10.1007/s10278-011-9392-z		
Schalekamp S, van Ginneken B, Heggelman B, Imhof-Tas M, Somers I, Brink M, et	Population	Intervention: ClearRead Detect with ClearRead Bone
al. New methods for using computer-aided detection information for the		Suppression + radiologist; same readers for intervention and comparator; CXR retrospectively selected, derived
detection of lung nodules on chest radiographs. Br J Radiol		from clinically indicated examinations, referral route
2014; 87 (1036):20140015. http://dx.doi.org/10.1259/bjr.20140015		unclear
Schalekamp S, van Ginneken B, Koedam E, Snoeren MM, Tiehuis AM,	Population	ClearRead Detect with ClearRead Bone Suppression +
Wittenberg R, et al. Computer-aided detection improves detection of pulmonary	_	radiologist; same readers for intervention and
nodules in chest radiographs beyond the support by bone-suppressed images.		comparator; referral route unclear: patients
Radiology 2014;272(1):252-61. http://dx.doi.org/10.1148/radiol.14131315		retrospectively selected with presence of a solid solitary
		lesion and CT within 3 months, control patients negative
		CXR and CT within 6 months
Seyyed-Kalantari L, Liu G, McDermott M, Chen IY, Ghassemi M. CheXclusion:	Intervention	Not a named intervention
Fairness gaps in deep chest X-ray classifiers. <i>Pac Symp Biocomput</i> 2021; 26 :232-		
43.		
https://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D		
=med19&AN=33691020		
Shi Z, Ma J, Feng Y, He L, Suzuki K. Evaluation of MTANNs for eliminating false-	Intervention	Additional algorithm applied to named interventions but
positive with different computer aided pulmonary nodules detection software.		on simulations
Pak J Pharm Sci 2015; 28 (6 Suppl):2311-6.		
Shi Z, Xu B, Zhao M, Zhao J, Wang Y, Liu Y, et al. A joint ROI extraction filter for	Intervention	CT scan
computer aided lung nodule detection. <i>Biomed Mater Eng</i> 2015; 26(Supplement		
1):S1491-S9. http://dx.doi.org/10.3233/BME-151448	The second secon	
Shimazaki A, Ueda D, Choppin A, Yamamoto A, Honjo T, Shimahara Y, et al. Deep	Intervention	Not a named interventions, also confirmed lung cancer
learning-based algorithm for lung cancer detection on chest radiographs using		cases only and not clear when CXRs performed
the segmentation method. <i>Sci Rep</i> 2022; 12 (1):727.		

http://dx.doi.org/10.1038/s41598-021-04667-w		
Sim Y, Chung MJ, Kotter E, Yune S, Kim M, Do S, <i>et al.</i> Deep Convolutional Neural Network-based Software Improves Radiologist Detection of Malignant Lung Nodules on Chest Radiographs. <i>Radiology</i> 2020; 294 (1):199-209. http://dx.doi.org/10.1148/radiol.2019182465	Population	Eligible software (and with radiologist on re-read); Population includes normal CXR from health screening population and CXR with lung cancer at tertiary hospital - referral unclear
Singh A, Lall B, Panigrahi BK, Agrawal A, Thangakunam B, Christopher DJ. Deep LF-Net: Semantic lung segmentation from Indian chest radiographs including severely unhealthy images. <i>Biomed Signal Process Control</i> 2021; 68 (no pagination) . http://dx.doi.org/10.1016/j.bspc.2021.102666	Intervention	Not eligible software, population from three datasets, referral status unknown
Singh R, Kalra MK, Nitiwarangkul C, Patti JA, Homayounieh F, Padole A, <i>et al.</i> Deep learning in chest radiography: Detection of findings and presence of change. <i>PLoS ONE [Electronic Resource]</i> 2018; 13 (10):e0204155. http://dx.doi.org/10.1371/journal.pone.0204155	Intervention	Employees of Qure.ai and software referred to as Qure AI, appears to be stand alone; population from CHestX- ray8 datatset, no details; outcome not nodules or cancer
Sirshar M, Hassan T, Akram MU, Khan SA. An incremental learning approach to automatically recognize pulmonary diseases from the multi-vendor chest radiographs. <i>Comput Biol Med</i> 2021; 134 (C):9. http://dx.doi.org/10.1016/j.compbiomed.2021.104435	Intervention	Not a named intervention, also CXRs from various databases but referral route of participants not known, validation study for the algorithm
Stubblefield JW, Cooksey L, Causey J, Qualls J, Bellis E, Ashby C, et al. Artificial Intelligence Algorithms for Medical Imaging and Healthcare: Arkansas State University; 2021.	Study design	Thesis, full text not retrieved
Szucs-Farkas Z, Schick A, Cullmann JL, Ebner L, Megyeri B, Vock P, <i>et al.</i> Comparison of dual-energy subtraction and electronic bone suppression combined with computer-aided detection on chest radiographs: effect on human observers' performance in nodule detection. <i>AJR American Journal of</i> <i>Roentgenology</i> 2013; 200 (5):1006-13. http://dx.doi.org/10.2214/AJR.12.8877	Intervention	Riverain manufacturer, but software includes SoftView (bone suppression imaging) and OnGuard (nodule detection) – query early version of ClearRead Detect; population retrospectively selected with pulmonary nodules
Tam M, Dyer T, Dissez G, Morgan TN, Hughes M, Illes J, <i>et al.</i> Augmenting lung cancer diagnosis on chest radiographs: positioning artificial intelligence to improve radiologist performance. <i>Clin Radiol</i> 2021; 76 (8):607-14. http://dx.doi.org/10.1016/j.crad.2021.03.021	Population	Software eligible. Population referral route not reported. Includes CXRs with difficult to locate nodules and CXRs with no nodules. includes AI+clinician vs AI alone but is simulating what might happen if the AI alone was used as triage
Teng PH, Liang CH, Lin Y, Alberich-Bayarri A, Gonzalez RL, Li PW, <i>et al.</i> Performance and educational training of radiographers in lung nodule or mass detection: Retrospective comparison with different deep learning algorithms. <i>Medicine</i> 2021; 100 (23):e26270. http://dx.doi.org/10.1097/MD.00000000026270	Intervention	QUIBIM Chest X-ray Classifier (stated in abstract)
Toda N, Hashimoto M, Iwabuchi Y, Nagasaka M, Takeshita R, Yamada M, et al.	Intervention	Not a named intervention

Validation of deep learning-based computer-aided detection software use for interpretation of pulmonary abnormalities on chest radiographs and examination of factors that influence readers' performance and final diagnosis. <i>Japanese Journal of Radiology</i> 2022; 19 :19. http://dx.doi.org/10.1007/s11604-022-01330-w		
Ueda D, Yamamoto A, Shimazaki A, Walston SL, Matsumoto T, Izumi N, <i>et al.</i> Artificial intelligence-supported lung cancer detection by multi-institutional readers with multi-vendor chest radiographs: a retrospective clinical validation study. <i>BMC Cancer</i> 2021; 21 (1):1120. http://dx.doi.org/10.1186/s12885-021- 08847-9	Intervention	Not a named intervention, also population unclear referral route as retrospectively collected and includes CXRs from confirmed lung cancer cases and those without nodules
van Beek EJR, Ahn JS, Kim MJ, Murchison JT. Validation study of machine- learning chest radiograph software in primary and emergency medicine. <i>Clin</i> <i>Radiol</i> 2022; 25 :25. http://dx.doi.org/10.1016/j.crad.2022.08.129	Intervention	Intervention eligible (Lunit INSIGHT CXR (Lunit)) but not an adjunct to clinician, CXRs from referrals from primary care and ED and reported separately, compares AI alone vs human reader alone
Wang H, Jia H, Lu L, Xia Y. Thorax-Net: An Attention Regularized Deep Neural Network for Classification of Thoracic Diseases on Chest Radiography. <i>IEEE J</i> <i>Biomed Health Inform</i> 2020; 24 (2):475-85. http://dx.doi.org/10.1109/jbhi.2019.2928369	Intervention	From known SR not in Endnote. Not a named intervention.
Wang Q, Kang W, Wu C, Wang B. Computer-aided detection of lung nodules by SVM based on 3D matrix patterns. <i>Clin Imaging</i> 2013; 37 (1):62-9. http://dx.doi.org/10.1016/j.clinimag.2012.02.003	Intervention	Not CXR
Wozniak M, Polap D, Capizzi G, Sciuto GL, Kosmider L, Frankiewicz K. Small lung nodules detection based on local variance analysis and probabilistic neural network. <i>Comput Methods Programs Biomed</i> 2018; 161 :173-80. http://dx.doi.org/10.1016/j.cmpb.2018.04.025	Intervention	Software not stated, no details on population
Xu Y, Ma D, He W. Assessing the use of digital radiography and a real-time interactive pulmonary nodule analysis system for large population lung cancer screening. <i>Eur J Radiol</i> 2012; 81 (4):e451-6. http://dx.doi.org/10.1016/j.ejrad.2011.04.031	Intervention	Software: IQQA®-Chest Workstation
Yates EJ, Yates LC, Harvey H. Machine learning "red dot": open-source, cloud, deep convolutional neural networks in chest radiograph binary normality classification. <i>Clin Radiol</i> 2018; 73 (9):827-31. http://dx.doi.org/10.1016/j.crad.2018.05.015	Intervention	Intervention not relevant, ChestX-ray14 dataset
Yoo H, Kim EY, Kim H, Choi YR, Kim MY, Hwang SH, <i>et al.</i> Artificial Intelligence- Based Identification of Normal Chest Radiographs: A Simulation Study in a Multicenter Health Screening Cohort. <i>Korean Journal of Radiology</i>	Population	Health "screening" population, aim was to help remove normal CXRs so unlikely referred symptomatic or incidental

2022; 23 (10):1009-18. http://dx.doi.org/10.3348/kjr.2022.0189		
Yoo H, Lee SH, Arru CD, Doda Khera R, Singh R, Siebert S, <i>et al.</i> AI-based improvement in lung cancer detection on chest radiographs: results of a multi-reader study in NLST dataset. <i>Eur Radiol</i> 2021; 31 (12):9664-74. http://dx.doi.org/10.1007/s00330-021-08074-7	Population	Health screening population from an RCT of lung cancer screening
Zhang Z, Yang J, Zhao J. An automatic detection model of pulmonary nodules based on deep belief network. <i>Int J Wire Mob Comput</i> 2019; 16 (1):7–13.	British library not available	
Zheng S, Shen Z, Pei C, Ding W, Lin H, Zheng J, <i>et al.</i> Interpretative computer- aided lung cancer diagnosis: From radiology analysis to malignancy evaluation. <i>Comput Methods Prog Biomed</i> 2021; 210 (C):11. http://dx.doi.org/10.1016/j.cmpb.2021.106363	Intervention	Not eligible software, R2MNet, for CT not CXR

Non-Cancer:

Reference	Reason for exclusion	Comments
Adu K, Yu Y, Cai J, Tattrah VD, Ansere JA, Tashi N. S-CCCapsule: Pneumonia	Outcome	Not named commercial software, not AI+clinician, no
detection in chest X-ray images using skip-connected convolutions and capsule		outcomes of relevance
neural network. J Intell Fuzzy Syst 2021;41(1):757–81.		
http://dx.doi.org/10.3233/jifs-202638		
Afzali A, Babapour Mofrad F, Pouladian M. Contour-based lung shape analysis in	Outcome	Not named commercial software, not AI+clinician, no
order to tuberculosis detection: modeling and feature description. Med Biol Eng		outcomes of relevance
Comput 2020;58(9):1965-86. http://dx.doi.org/10.1007/s11517-020-02192-y		
Albahli S. A deep neural network to distinguish COVID-19 from other chest	Outcome	Not named commercial software, not AI+clinician, no
diseases using X-ray images. Current Medical Imaging 2021;17(1):109-19.		outcomes of relevance although nodules included
http://dx.doi.org/10.2174/1573405616666200604163954		
Anter AM, Oliva D, Thakare A, Zhang Z. AFCM-LSMA: New intelligent model	Outcome	Not named commercial software, not AI+clinician, no
based on Lévy slime mould algorithm and adaptive fuzzy C-means for		outcomes of relevance
identification of COVID-19 infection from chest X-ray images. Adv Eng Inform		
2021; 49 (C):13. http://dx.doi.org/10.1016/j.aei.2021.101317		
Bharati S, Podder P, Mondal MRH. Hybrid deep learning for detecting lung	Intervention	Not named commercial software, not AI+clinician
diseases from X-ray images. Informatics in Medicine Unlocked 2020;20 (no		
pagination). http://dx.doi.org/10.1016/j.imu.2020.100391		
Bhardwaj P, Kaur A. A novel and efficient deep learning approach for COVID-19	Outcome	Not named commercial software, not AI+clinician, no
detection using X-ray imaging modality. International Journal of Imaging		outcomes of relevance
Systems & Technology 2021; 31 (4):1775-91.		

http://dx.doi.org/10.1002/ima.22627		
Codlin AJ, Dao TP, Vo LNQ, Forse RJ, Van Truong V, Dang HM, et al. Independent	Outcome	AI outcomes were abnormal opacities/cavitation/lesions
evaluation of 12 artificial intelligence solutions for the detection of tuberculosis.		possibly caused by TB or normal which included
Sci Rep 2021;11(1):23895. http://dx.doi.org/10.1038/s41598-021-03265-0		abnormal non-tubercular origin
Damania K, Pawar PM, Pramanik R. Convolutional Neural Networks for	Outcome	Not named commercial software, not AI+clinician, no
Detection of COVID-19 From Chest X-Rays. Int J Ambient Comput Intell		outcomes of relevance
2022; 13 (1):1–21. http://dx.doi.org/10.4018/ijaci.300793		
El-Bana S, Al-Kabbany A, Sharkas M. A multi-task pipeline with specialized	Outcome	Simulation study, not commercial named software, no
streams for classification and segmentation of infection manifestations in		outcomes of relevance
COVID-19 scans. PeerJ Computer Science 2020;6:e303.		
http://dx.doi.org/10.7717/peerj-cs.303		
Engle E, Gabrielian A, Long A, Hurt DE, Rosenthal A. Performance of Qure.ai	Intervention	Incidental population. Retrospective evaluation of CXRs
automatic classifiers against a large annotated database of patients with diverse		of people with TB, nodules was an outcome, unclear
forms of tuberculosis. <i>PLoS ONE [Electronic Resource]</i> 2020; 15 (1):e0224445.		referral route and not AI+clinician
http://dx.doi.org/10.1371/journal.pone.0224445		
Ezzat D, Hassanien AE, Ella HA. An optimized deep learning architecture for the	Outcome	Not named commercial software, not AI+clinician, no
diagnosis of COVID-19 disease based on gravitational search optimization.		outcomes of relevance
Applied Soft Computing 2021; 98 :106742.		
http://dx.doi.org/10.1016/j.asoc.2020.106742		
Fehr J, Konigorski S, Olivier S, Gunda R, Surujdeen A, Gareta D, et al. Computer-	Outcome	Not named commercial software, not AI+clinician, no
aided interpretation of chest radiography reveals the spectrum of tuberculosis		outcomes of relevance
in rural South Africa. npj Digital Medicine 2021;4(1) (no pagination).		
http://dx.doi.org/10.1038/s41746-021-00471-y		
Gayathri JL, Abraham B, Sujarani MS, Nair MS. A computer-aided diagnosis	Outcome	Not named commercial software, not AI+clinician, no
system for the classification of COVID-19 and non-COVID-19 pneumonia on		outcomes of relevance
chest X-ray images by integrating CNN with sparse autoencoder and feed		
forward neural network. Comput Biol Med 2022;141 (no pagination).		
http://dx.doi.org/10.1016/j.compbiomed.2021.105134		
Gipson J, Tang V, Seah J, Kavnoudias H, Zia A, Lee R, et al. Diagnostic accuracy of	Outcome	Software eligible. Participants were CXR following
a commercially available deep-learning algorithm in supine chest radiographs		'presenting' with blunt trauma, referral route unclear, not
following trauma. <i>Br J Radiol</i> 2022; 95 (1134):20210979.		AI+clinician, no lung cancer or nodules
http://dx.doi.org/10.1259/bjr.20210979		
Govindarajan S, Swaminathan R. Analysis of Tuberculosis in Chest Radiographs	Outcome	Not named commercial software, not AI+clinician, no
for Computerized Diagnosis using Bag of Keypoint Features. J Med Syst		outcomes of relevance
2019; 43 (4):1–9. http://dx.doi.org/10.1007/s10916-019-1222-8		
Gupta A, Sheth P, Xie P. Neural architecture search for pneumonia diagnosis	Outcome	Not named commercial software, not AI+clinician, no

from chest X-rays. <i>Sci Rep</i> 2022; 12 (1):11309. http://dx.doi.org/10.1038/s41598-022-15341-0		outcomes of relevance
Haghanifar A, Majdabadi MM, Choi Y, Deivalakshmi S, Ko S. COVID-CXNet: Detecting COVID-19 in frontal chest X-ray images using deep learning. <i>Multimedia Tools Appl</i> 2022; 81 (21):30615–45. http://dx.doi.org/10.1007/s11042-022-12156-z	Outcome	Not named commercial software, not AI+clinician, no outcomes of relevance
Hajjej F, Ayouni S, Hasan M, Abir T, Kaur A. Automatic Detection of Cases of COVID-19 Pneumonia from Chest X-ray Images and Deep Learning Approaches. Intell Neuroscience 2022; 2022 :8. http://dx.doi.org/10.1155/2022/7451551	Outcome	Not named commercial software, not AI+clinician, no outcomes of relevance
Hipolito Canario DA, Fromke E, Patetta MA, Eltilib MT, Reyes-Gonzalez JP, Rodriguez GC, <i>et al.</i> Using artificial intelligence to risk stratify COVID-19 patients based on chest X-ray findings. <i>Intelligence-Based Medicine</i> 2022; 6 :100049. http://dx.doi.org/10.1016/j.ibmed.2022.100049	Outcome	Not commercial software (modified Qxr), not AI+clinician, no outcomes of lung cancer or nodules
Hong W, Hwang EJ, Lee JH, Park J, Goo JM, Park CM. Deep Learning for Detecting Pneumothorax on Chest Radiographs after Needle Biopsy: Clinical Implementation. <i>Radiology</i> 2022; 303 (2):433-41. http://dx.doi.org/10.1148/radiol.211706	Outcome	Software eligible (Lunit Insight), AI+clinician vs AI, no nodule or lung cancer outcomes
Hwang EJ, Kim H, Yoon SH, Goo JM, Park CM. Implementation of a Deep Learning-Based Computer-Aided Detection System for the Interpretation of Chest Radiographs in Patients Suspected for COVID-19. <i>Korean Journal of</i> <i>Radiology</i> 2020; 21 (10):1150-60. http://dx.doi.org/10.3348/kjr.2020.0536	Outcome	Software eligible (Lunit Insight), AI+clinician vs AI, outcomes presence versus absence of any suggestion of pneumonia. Nodules could be a reason for a false positive - N(%) are reported but this is not against a reference standard /any diagnostic accuracy outcomes
Irmak E. Implementation of convolutional neural network approach for COVID- 19 disease detection. <i>Physiol Genomics</i> 2020; 52 (12):590-601. http://dx.doi.org/10.1152/physiolgenomics.00084.2020	Outcome	Not named commercial software, not AI+clinician, no outcomes of relevance
Jaeger S, Karargyris A, Candemir S, Folio L, Siegelman J, Callaghan F, et al. Automatic tuberculosis screening using chest radiographs. <i>IEEE Trans Med</i> <i>Imaging</i> 2014; 33(2) :233-45. http://dx.doi.org/10.1109/TMI.2013.2284099	Outcome	Not named commercial software, not AI+clinician, no outcomes of relevance
Jangam E, Barreto AAD, Annavarapu CSR. Automatic detection of COVID-19 from chest CT scan and chest X-Rays images using deep learning, transfer learning and stacking. <i>Applied intelligence (Dordrecht, Netherlands)</i> 2022; 52 (2):2243-59. http://dx.doi.org/10.1007/s10489-021-02393-4	Outcome	Not named commercial software, not AI+clinician, no outcomes of relevance
Kagujje M, Kerkhoff AD, Nteeni M, Dunn I, Mateyo K, Muyoyeta M. The performance of computer-aided detection digital chest X-ray reading technologies for triage of active Tuberculosis among persons with a history of previous Tuberculosis. <i>Clin Infect Dis</i> 2022; 25 :25.	Outcome	Software eligible (Qxr) but not AI+clinician, no nodule or lung cancer outcomes

http://dx.doi.org/10.1093/cid/ciac679		
Kapoor A, Kapoor A, Mahajan G. Use of Artificial Intelligence to Triage Patients	Outcome	Not a named software (COVID-19 AI, Quibim) or with
with Flu-Like Symptoms Using Imaging in Non-COVID-19 Hospitals during COVID-		clinician
19 Pandemic: An Ongoing 8-Month Experience. Indian J Radiol Imaging		
2021; 31 (4):901-9. http://dx.doi.org/10.1055/s-0041-1741103		
Kim S, Lin CW, Tseng GC. MetaKTSP: a meta-analytic top scoring pair method for	Outcome	Not a named software, not AI for CXR, no radiologists,
robust cross-study validation of omics prediction analysis. <i>Bioinformatics</i>		no relevant outcomes
2016; 32 (13):1966-73. http://dx.doi.org/10.1093/bioinformatics/btw115		
Kim W, Lee SM, Kim JI, Ahn Y, Park S, Choe J, et al. Utility of a Deep Learning	Outcome	Software eligible (VUNO Med-Chest X-Ray, VUNO)
Algorithm for Detection of Reticular Opacity on Chest Radiography in Patients		and AI+clinican vs clinican, no outcomes of nodules or
With Interstitial Lung Disease. AJR American Journal of Roentgenology		lung cancer, those with nodules were excluded from the
2022; 218 (4):642-50. http://dx.doi.org/10.2214/AJR.21.26682		CXRs being investigated
Kör H, Erbay H, Yurttakal AH. Diagnosing and differentiating viral pneumonia	Outcome	Not eligible software, pneumonia and covid, no cancer
and COVID-19 using X-ray images. <i>Multimedia Tools Appl</i> 2022; 81 (27):39041–		outcomes
57. http://dx.doi.org/10.1007/s11042-022-13071-z		
Lee YW, Huang SK, Chang RF. CheXGAT: A disease correlation-aware network for	Intervention	Not eligible software, population unclear, from CHestX-
thorax disease diagnosis from chest X-ray images. Artif Intell Med 2022;132 (no		ray8 dataset; thorax disease
pagination). http://dx.doi.org/10.1016/j.artmed.2022.102382		
Louati H, Louati A, Bechikh S, Masmoudi F, Aldaej A, Kariri E. Topology	Outcome	Not a named commercial software, not AI+clinician,
optimization search of deep convolution neural networks for CT and X-ray image		single arm study compared with historical studies, no
classification. BMC Med Imaging 2022;22(1):120.		relevant outcomes
http://dx.doi.org/10.1186/s12880-022-00847-w		
MacPherson M, Muthuswamy K, Amlani A, Hutchinson C, Goh V, Montana G.	Intervention	Not a symptomatic or asymptomatic population looking
Assessing the Performance of Automated Prediction and Ranking of Patient Age		for lung cancer / nodules, not commercial software, not
from Chest X-rays Against Clinicians. Medical Image Computing and Computer		AI+clinician vs clinician, no outcomes
Assisted Intervention – MICCAI 2022; Cham, abstract no. 302, p. 255-65.		
Maheshwari S, Sharma RR, Kumar M. LBP-based information assisted intelligent	Outcome	Not eligible software, covid, no cancer outcomes
system for COVID-19 identification. Comput Biol Med 2021;134(C):8.		
http://dx.doi.org/10.1016/j.compbiomed.2021.104453		
Manokaran J, Zabihollahy F, Hamilton-Wright A, Ukwatta E. Detection of COVID-	Outcome	Not eligible software, covid, no cancer outcomes
19 from chest x-ray images using transfer learning. Journal of Medical Imaging		
2021;8(S1) (no pagination). http://dx.doi.org/10.1117/1.JMI.8.S1.017503		
Masud M. A light-weight convolutional Neural Network Architecture for	Outcome	Not an eligible software or outcomes
classification of COVID-19 chest X-Ray images. Multimedia Systems		
2022; 28 (4):1165-74. http://dx.doi.org/10.1007/s00530-021-00857-8		

Initial chest radiographs and artificial intelligence (AI) predict clinical outcomes in COVID-19 patients: analysis of 697 Italian patients. <i>Eur Radiol</i> 2021; 31 (3):1770-9. http://dx.doi.org/10.1007/s00330-020-07269-8		presenting to ED with positive Covid-19 test, AI vs clinician, no relevant outcomes
Nash M, Kadavigere R, Andrade J, Sukumar CA, Chawla K, Shenoy VP, <i>et al.</i> Deep learning, computer-aided radiography reading for tuberculosis: a diagnostic accuracy study from a tertiary hospital in India. <i>Sci Rep</i> 2020; 10 (1):210. http://dx.doi.org/10.1038/s41598-019-56589-3	Intervention	Unclear if referred from primary care, software eligible (qXR) is stand alone, outcomes not nodules (but included in 'opacity') or cancer
Patel BN, Rosenberg L, Willcox G, Baltaxe D, Lyons M, Irvin J, et al. Human- machine partnership with artificial intelligence for chest radiograph diagnosis. <i>NPJ Digit Med</i> 2019; 2 :111. http://dx.doi.org/10.1038/s41746-019-0189-7	Intervention	Not relevant software.
Qin ZZ, Ahmed S, Sarker MS, Paul K, Adel ASS, Naheyan T, <i>et al.</i> Tuberculosis detection from chest x-rays for triaging in a high tuberculosis-burden setting: an evaluation of five artificial intelligence algorithms. <i>The Lancet Digital Health</i> 2021; 3 (9):e543-e54. http://dx.doi.org/10.1016/S2589-7500(21)00116-3	Outcome	Eligible software (InferRead DR, Lunit INSIGHT, qXR and 2 others not eligible) but stand alone, vs radiologist; population presented or referred for tuberculosis screening but unclear if primary care referrals; no nodule or cancer outcomes
Qin ZZ, Sander MS, Rai B, Titahong CN, Sudrungrot S, Laah SN, <i>et al.</i> Using artificial intelligence to read chest radiographs for tuberculosis detection: A multi-site evaluation of the diagnostic accuracy of three deep learning systems. <i>Sci Rep</i> 2019; 9 (1):15000. http://dx.doi.org/10.1038/s41598-019-51503-3	Outcome	Eligible software (Lunit INSIGHT, qXR and one not relevant) but appears to be AI alone. Referral status unclear but enrolled in outpatient dept. No relevant outcomes
Rao PS, Bheemavarapu P, Kalyampudi PSL, Rao TVM. An Efficient Method for Coronavirus Detection Through X-rays Using Deep Neural Network. <i>Current</i> <i>Medical Imaging</i> 2022; 18(6) :587-92. http://dx.doi.org/10.2174/1573405617999210112193220	Outcome	Not eligible software, covid, no cancer outcomes
Rathi R, Balayan N, Kumar CNSV. Pneumonia detection using chest X-ray. International Journal of Pharmaceutical Research 2020; 12(3) :1150-3. http://dx.doi.org/10.31838/ijpr/2020.12.03.181	Outcome	Not eligible software, covid, no cancer outcomes
Reis HC, Turk V. COVID-DSNet: A novel deep convolutional neural network for detection of coronavirus (SARS-CoV-2) cases from CT and Chest X-Ray images. <i>Artif Intell Med</i> 2022; 134 (no pagination) . http://dx.doi.org/10.1016/j.artmed.2022.102427	Outcome	Not eligible software, covid, no cancer outcomes
Salama WM, Shokry A, Aly MH. A generalized framework for lung Cancer classification based on deep generative models. <i>Multimedia Tools Appl</i> 2022; 81 (23):32705–22. http://dx.doi.org/10.1007/s11042-022-13005-9	Intervention	Not eligible software, population unclear, cancer detection
Santosh KC, Antani S. Automated Chest X-Ray Screening: Can Lung Region Symmetry Help Detect Pulmonary Abnormalities? <i>IEEE Trans Med Imaging</i> 2018; 37 (5):1168-77. http://dx.doi.org/10.1109/TMI.2017.2775636	Outcome	Not AI and no outcomes

Singh A, Lall B, Panigrahi BK, Agrawal A, Thangakunam B, Christopher DJ. Deep LF-Net: Semantic lung segmentation from Indian chest radiographs including severely unhealthy images. <i>Biomed Signal Process Control</i> 2021; 68 (no pagination) . http://dx.doi.org/10.1016/j.bspc.2021.102666	Outcome	Not eligible software, databases of different diseases including nodules, no relevant outcomes
Sun W, Wu D, Luo Y, Liu L, Zhang H, Wu S, <i>et al.</i> A Fully Deep Learning Paradigm for Pneumoconiosis Staging on Chest Radiographs. <i>IEEE Journal of Biomedical</i> <i>and Health Informatics</i> 2022; 26(10) :5154-64. http://dx.doi.org/10.1109/JBHI.2022.3190923	Outcome	Not eligible software, pneumoconiosis, no cancer outcomes
Sung J, Park S, Lee SM, Bae W, Park B, Jung E, <i>et al.</i> Added value of deep learning-based detection system for multiple major findings on chest radiographs: A randomized crossover study. <i>Radiology</i> 2021; 299(2) :450-9. http://dx.doi.org/10.1148/RADIOL.2021202818	Population	Eligible software Med-Chest X-Ray (Vuno) + radiologist; population is inpatients + outpatients, proportions not reported, referral and symptom status unclear, proportion unclear; limited relevant outcomes but includes nodule detection
Tan M, Deklerck R, Cornelis J, Jansen B. Phased searching with NEAT in a Time- Scaled Framework: Experiments on a computer-aided detection system for lung nodules. <i>Artif Intell Med</i> 2013; 59 (3):157–67. http://dx.doi.org/10.1016/j.artmed.2013.07.002	Intervention	Not eligible software, population unclear, nodule detection
Tavaziva G, Majidulla A, Nazish A, Saeed S, Benedetti A, Khan AJ, <i>et al.</i> Diagnostic accuracy of a commercially available, deep learning-based chest X-ray interpretation software for detecting culture-confirmed pulmonary tuberculosis. <i>Int J Infect Dis</i> 2022; 122 :15-20. http://dx.doi.org/10.1016/j.ijid.2022.05.037	Outcome	Eligible software (Lunit Insight) but appears to be stand alone; people presenting with tuberculosis symptoms or household contacts, unclear if referred from primary care; no nodule or cancer outcomes
Vajda S, Karargyris A, Jaeger S, Santosh KC, Candemir S, Xue Z, <i>et al.</i> Feature Selection for Automatic Tuberculosis Screening in Frontal Chest Radiographs. <i>J</i> <i>Med Syst</i> 2018; 42 (8):146. http://dx.doi.org/10.1007/s10916-018-0991-9	Outcome	Not AI, no outcomes
Vieira P, Sousa O, Magalhães D, Rabêlo R, Silva R. Detecting pulmonary diseases using deep features in X-ray images. <i>Pattern Recogn</i> 2021; 119 (C):13. http://dx.doi.org/10.1016/j.patcog.2021.108081	Outcome	Not eligible software, covid and pneumonia, no relevant outcomes
Wang K, Zhang X, Huang S, Chen F. Automatic Detection of Pneumonia in Chest X-Ray Images Using Cooperative Convolutional Neural Networks. Paper presented at: Pattern Recognition and Computer Vision: Second Chinese Conference, PRCV 2019, Xi'an, China, November 8–11, 2019, Proceedings, Part II; Xi'an, China. URL: https://doi.org/10.1007/978-3-030-31723-2_28	Outcome	Not eligible software, pneumonia, no relevant outcomes
Zaglam N, Jouvet P, Flechelles O, Emeriaud G, Cheriet F. Computer-aided diagnosis system for the Acute Respiratory Distress Syndrome from chest radiographs. <i>Comput Biol Med</i> 2014; 52 :41–8. http://dx.doi.org/10.1016/j.compbiomed.2014.06.006	Outcome	Not eligible software, acute respiratory distress syndrome, no relevant outcomes

Zhang R, Tie X, Qi Z, Bevins NB, Zhang C, Griner D, <i>et al.</i> Diagnosis of Coronavirus Disease 2019 Pneumonia by Using Chest Radiography: Value of Artificial Intelligence. <i>Radiology</i> 2021; 298(2) :E88-E97. http://dx.doi.org/10.1148/RADIOL.2020202944	Outcome	Not eligible software, covid, no relevant outocmes
Zhou W, Cheng G, Zhang Z, Zhu L, Jaeger S, Lure FYM, et al. Deep learning-based pulmonary tuberculosis automated detection on chest radiography: large-scale independent testing. Quantitative Imaging in Medicine & Surgery 2022;12(4):2344-55. http://dx.doi.org/10.21037/qims-21-676	Intervention	Not an eligible software, symptom and referal status unclear, focus is on TB

Ongoing studies

Title and link	Reason for exclusion	Comments
Retrospective Study of Carebot AI CXR Performance in Preclinical Practice	Intervention	Not commercial named software, population in hospital, not AI+radiologist
Research and development of artificial intelligence assistant diagnosis and clinical decision system for pulmonary ground glass nodules	Intervention	Not commercial named software, not Xray, population pre surgery or biopsy
Diagnosis of lung nodule and lung cancer on screening chest radiographs: Comparative clinical trial for evaluation of artificial intelligence-integrated PACS versus conventional PACS	Duplicate	In database searches, already screened.
Sensitivity of chest X-ray in patients with suspected acute thoracic diseases in emergency department: Randomized controlled trial to assess efficiency of artificial intelligence-based computer-aided detection system	Duplicate	In database searches, already screened.
To compare the outcome performance of Digital Chest Radiograph and radiologist diagnosis based on chest x ray	Intervention	Exclude – software not named, not AI+radiologist (AI vs radiologist reference standard)
A Study to Assess the Impact of an Artificial Intelligence (AI) System on Chest X-ray Reporting	Duplicate	Found via other sources, already screened.
A study to evaluate the effectiveness of computer artificial inteligence in identifying and classifying abnormalites in chest radiographs	Intervention	Software unclear but no manufacturer specified, non- commercial funding. Includes AI+radiologist vs radiologist alone. Population could include lung cancer but suggests will be subgroup analyses. Study not yet recruiting
Clinical Validation of Machine Learning Triage of Chest Radiographs	Intervention	Software unclear but no manufacturer specified + non- commercial funding.
Artificial Intelligence to Improve Physicians' Interpretation of Chest X-Rays in Breathless Patients	Intervention	Not commercial named software, population presenting to A+E
Multicenter Validation Study of an Artificial Intelligence Tool for Automatic	Intervention	Not commercial named software, not nodules or lung

Classification of Chest X-rays		cancer outcomes
Use of artificial intelligence to interpret chest X-rays	Intervention	Named commercial software (Qure.ai), unclear
		population and not AI+radiologist, validation study
Evaluation of Computer-Assisted-Detection (CAD) software for Chest X-ray	Intervention	Not a named software (sponsor is lpixel inc), unclear if
lung Nodule		AI+radiologist. Study is completed and URL links to
		study already screened
Deep Learning Model for Pure Solid Nodules Classification	Intervention	CT
Deep Learning Signature for Predicting Occult Nodal Metastasis of Clinical NO	Intervention	PET/CT
Lung Cancer		
Effects of percutaneous vertebroplasty on respiratory parameters in patients with	Intervention	Percutaneous vertebroplasty
osteoporotic vertebral compression fractures		
Research on Differential Diagnosis of Pulmonary Nodules Based on Radiomics	Intervention	CT
and Artificial Intelligence		
Development and validation of AI model to predict the surgical site infection in	Intervention	AI-based model to predict the outcome of surgical site
lung cancer surgery		infection (SSI)
Constructing a deep learning model for the differentiation of benign and	Intervention	CT
malignant single solid small nodules based on multi-omics features: a		
prospective, multi-center clinical study		
Future Health Today: A cluster randomised controlled trial of quality	Intervention	Quality improvement activities in general practice.
improvement activities in general practice		Technology platform consisting of audit, point of care
		clinical decision support, and QI templates. Education
		activities.
A Preliminary Study on the Detection of Plasma Markers in Early Diagnosis for	Intervention	Machine-learning for Detection of Plasma Markers
Lung Cancer		
Research on the rapid pathological diagnosis of lung nodules based on	Intervention	СТ
intraoperative tumor images and preoperative CT images based on deep learning		
Establishment and Application Research of Early Lung Cancer Prognosis	Intervention	Grading System Based on Machine Learning and New
Grading System Based on Machine Learning and New Pathological Features		Pathological Features
Automatic PD-L1 immunohistochemistry evaluation system for non-small cell	Intervention	immunohistochemistry
lung cancer based on deep learning		
Application Research of Artificial Intelligence Assistant System in in	Intervention	AI in Preoperative Evaluation. CT already used
Comprehensive Preoperative Evaluation of Early Lung Cancer		
The application of artificial intelligence diagnosis system in the pathological	Intervention	Deep learning in the pathological grades differentiation
greades differentiation in lung adenocarcinoma		
Multicenter clinical study of PET / CT radiomics in predicting gene mutation of	Intervention	PET/CT
lung cancer		
Study for the combination of medical image artificial intelligence technology and	Intervention	CT and pathological diagnosis
intraoperative frozen pathology can accurately predict the stage and subtypes of		

lung adenocarcinoma		
Tumor Invasiveness Estimation of Artificial Intelligence System for Subsolid	Intervention	СТ
Nodules on Computed Tomography: Diagnostic Performance and Utility		
Verification in Clinical Practice		
Technical standard and application of intelligence assisted ultrasound indiagnosis	Intervention	ultrasound
of subpleural lung lesions		
Lung Nodule Imaging Biobank for Radiomics and AI Research LIBRA	Intervention	СТ
Investigation of the BRAF mutation status in the pleural punctate in patients with	Intervention	Automatic diagnostic system for malignant pleural
malignant melanoma, colorectal or lung cancer, that show a BRAF mutation in		effusion
the primary tumor and the comparison of the result with the conventional		
cytological / immunohistochemical and molecular cytology findings of the		
pleural punctate		
Best Start Trial: early intervention physiotherapy to improve motor outcomes in	Intervention	Physiotherapy
infants at high risk of cerebral palsy or motor delay		
China Lung Cancer Screening (CLUS) Study Version 2.0	Intervention	СТ
Development and Validation of a Three-dimensional Convolutional Neural	Intervention	СТ
Network for Automated Detection of Lung Nodule from Computed Tomography		
Images		
Evaluation of Use of Diagnostic AI for Lung Cancer in Practice	Intervention	CT (specified in clinicaltrials.gov record)
Diagnostic Performance of Neural Network-Based Artificial Intelligent in	Intervention	CT
Detecting Pulmonary Nodule on Chest CT		
CT data collection of pulmonary nodules and analysis of artificial intelligence	Intervention	СТ
Follow up after curative-intent lung cancer treatment	Intervention	PET-CT or CT surveillance of lung cancer patients
A Phase III Study of MEDI4736, given as Monotherapy or in Combination with	Intervention	pharmaceutical
Tremelimumab, versus Standard of Care in Patients with Locally Advanced or		
Metastatic Non-Small Cell Lung Cancer		
Screening for Early Lung Cancer in Shanghai, China	Intervention	СТ
Natural History of Lung Nodules Seen on CT Scans From Participants at High-	Intervention	СТ
Risk of Developing Lung Cancer		
Development and Validation of Artificial Intelligence Based Tool to read Chest	Intervention	Software unclear but no manufacturer specified, non-
X-rays in order to detect Pulmonary TB and other lung diseases		commercial funding, likely screening population,
		tuberculosis
Feasibility of AI-based Heart Function Prediction Model Using CXR	Population	Patient who visited the emergency room or outpatient
		clinic due to dyspnea and chest
		Pain. Outcome Left Ventricular Ejection Fraction < 40%
Rapid Research in Diagnostics Development for TB Network	Intervention	Software not AI, no nodules as outcomes, tuberculosis
Comparative Study of Artificial Intelligence and Radiologists in Assessing	Intervention	СТ
Severity of COVID19 Patient Images		

Novel Artificial Intelligence Algorithm to screen COVID-19 Patients from X- Ray, CT-Scan of Thorax and Voice Sampling through Android App and storage through Cloud	Intervention	Software unclear but no manufacturer specified, non- commercial funding
Development and evaluation of minimally invasive and Dynamic digital radiography	Intervention	Not AI. CXR for evaluation of pulmonary function
Artificial Intelligence Algorithms for Discriminating Between COVID-19 and Influenza Pneumonitis Using Chest X-Rays	Intervention	Software unclear but not a named manufacturer, no outcomes of relevance
Study for the key issues of the diagnosis and treatment of novel coronavirus pneumonia (COVID-19) based on the medical imaging	Intervention	Not AI algorithm / software, no outcomes
Can periodically promoting tuberculosis and HIV testing reduce undiagnosed infectious tuberculosis and tuberculosis transmission in communities?	Intervention	Not AI, no outcomes, population likely screening
MAchine Learning in whole Body Oncology	Intervention	Magnetic resonance (MR) imaging
<u>Clinical trial to evaluate the clinical effectiveness of pneumothorax reading</u> results using artificial intelligence software in chest X-ray images	Intervention	Software unclear but no manufacturer specified, non- commercial funding, no outcomes of relevance
Accuracy of artificial intelligence in CXR screening for pulmonary tuberculosis	Intervention	Not commercial named software
Crowdsourcing an Open COVID-19 Imaging Repository for AI Research	Intervention	Not commercial named software
Predicting morbidity and mortality of preterm infants by analyzing chest x-ray images at admission using deep learning algorithms	Population	Preterm infants
Evaluation of detection of Pulmonary TB by computer aided technology	Intervention	Not named commercial software but Qure.ai are co- sponsors, population referral unclear, not AI+radiologist, no outcomes
The retrospective study for the development of the Artificial Intelligence (AI) regarding with the chest x-ray in pulmonary arterial hypertension	Intervention	Not commercial named software (3M)
Potential of Deep Learning in Assessing Pneumoconiosis Depicted on Digital Chest Radiography	Intervention	Not commercial named software, non-commercial funding, screening population
Evaluation of Pneumoconiosis High Risk Early Warning Models	Intervention	Not commercial named software
Coronavirus: Ventilator Outcomes Using Artificial Intelligence Chest Radiographs & Other Evidence-based Co-variates	Intervention	Not commercial named software, population in hospital
Evaluation of a COVID-19 Pneumonia CXR AI Detection Algorithm	Intervention	Not commercial named software
Advantage of Artificial Intelligence to detect COVID 19 using Chest X-Ray.	Intervention	Not commercial named software
Software for COVID19 Detection from Chest X-Ray, CT or Ultrasonography	Intervention	Not commercial named software
Classification of COVID-19 Infection in Posteroanterior Chest X-rays	Intervention	Not commercial named software

Reviews used for reference checking

Aggarwal R, Sounderajah V, Martin G, Ting DSW, Karthikesalingam A, King D, et al. Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis. Npj Digital Medicine 2021;4(1):65. http://dx.doi.org/10.1038/s41746-021-00438-z

Amir GJ, Lehmann HP. After Detection: The Improved Accuracy of Lung Cancer Assessment Using Radiologic Computer-aided Diagnosis. Acad Radiol 2016;23(2):186-91. http://dx.doi.org/10.1016/j.acra.2015.10.014

Forte GC, Altmayer S, Silva RF, Stefani MT, Libermann LL, Cavion CC, et al. Deep Learning Algorithms for Diagnosis of Lung Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022;14(16):09. http://dx.doi.org/10.3390/cancers14163856

Haber M, Drake A, Nightingale J. Is there an advantage to using computer aided detection for the early detection of pulmonary nodules within chest X-Ray imaging? Radiography (London) 2020;26(3):e170-e8. <u>http://dx.doi.org/10.1016/j.radi.2020.01.002</u>

Lee JH, Hwang EJ, Kim H, Park CM. A narrative review of deep learning applications in lung cancer research: from screening to prognostication. Translational Lung Cancer Research 2022;11(6):1217-29. <u>http://dx.doi.org/10.21037/tlcr-21-1012</u>

Li D, Pehrson LM, Lauridsen CA, Tottrup L, Fraccaro M, Elliott D, et al. The Added Effect of Artificial Intelligence on Physicians' Performance in Detecting Thoracic Pathologies on CT and Chest X-ray: A Systematic Review. Diagnostics 2021;11(12):26. http://dx.doi.org/10.3390/diagnostics11122206

Qin C, Yao D, Shi Y, Song Z. Computer-aided detection in chest radiography based on artificial intelligence: a survey. Biomed Eng Online 2018;17(1):113. http://dx.doi.org/10.1186/s12938-018-0544-y

Reviews not selected for reference checking

Cancer reviews

Jones CM, Buchlak QD, Oakden-Rayner L, Milne M, Seah J, Esmaili N, et al. Chest radiographs and machine learning - Past, present and future. J Med Imaging Radiat Oncol 2021;65(5):538-44. http://dx.doi.org/10.1111/1754-9485.13274

Ley S, Ley-Zaporozhan J. Novelties in imaging in pulmonary fibrosis and nodules. A narrative review. Pulmonology 2020;26(1):39-44. http://dx.doi.org/10.1016/j.pulmoe.2019.09.009

Meedeniya D, Kumarasinghe H, Kolonne S, Fernando C, Diez IT, Marques G. Chest X-ray analysis empowered with deep learning: A systematic review. Applied Soft Computing 2022;126:109319. http://dx.doi.org/10.1016/j.asoc.2022.109319

Mercy Theresa M, Bharathi VS. A Survey on CAD technique for various abnormality classification in chest radiography. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2016;7(4):331-42. http://www.rjpbcs.com/

Ozcelik N, Selimoglu I. Artificial intelligence applications in pulmonology and its advantages during the pandemic period. Tuberkuloz ve Toraks 2021;69(3):380-6. http://dx.doi.org/10.5578/tt.20219710

Subramanian N, Elharrouss O, Al-Maadeed S, Chowdhury M. A review of deep learning-based detection methods for COVID-19. Comput Biol Med 2022;143:105233. <u>http://dx.doi.org/10.1016/j.compbiomed.2022.105233</u>

Suzuki K. Overview of deep learning in medical imaging. Radiological Physics and Technology 2017;10(3):257-73. http://dx.doi.org/10.1007/s12194-017-0406-5

Tufail AB, Ma YK, Kaabar MKA, Martinez F, Junejo AR, Ullah I, et al. Deep Learning in Cancer Diagnosis and Prognosis Prediction: A Minireview on Challenges, Recent Trends, and Future Directions. Comput Math Methods Med 2021;2021 (no pagination). http://dx.doi.org/10.1155/2021/9025470

Yang J, Wang H, Geng C, Dai Y, Ji J. Advances in intelligent diagnosis methods for pulmonary ground-glass opacity nodules. Biomed Eng Online 2018;17(1) (no pagination). <u>http://dx.doi.org/10.1186/s12938-018-0435-2</u>

Yang Y, Feng X, Chi W, Li Z, Duan W, Liu H, et al. Deep learning aided decision support for pulmonary nodules diagnosing: a review. J Thorac Dis 2018;10(Suppl 7):S867-S75. http://dx.doi.org/10.21037/jtd.2018.02.57

Zheng X, He B, Hu Y, Ren M, Chen Z, Zhang Z, et al. Diagnostic Accuracy of Deep Learning and Radiomics in Lung Cancer Staging: A Systematic Review and

Meta-Analysis. Frontiers in Public Health 2022;10:938113. http://dx.doi.org/10.3389/fpubh.2022.938113

Non-cancer reviews

Adamidi ES, Mitsis K, Nikita KS. Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review. *Computational and Structural Biotechnology Journal* 2021;**19**:2833-50. http://dx.doi.org/10.1016/j.csbj.2021.05.010

Alzubaidi M, Zubaydi HD, Bin-Salem AA, Abd-Alrazaq AA, Ahmed A, Househ M. Role of deep learning in early detection of COVID-19: Scoping review. *Computer Methods and Programs in Biomedicine Update* 2021;**1**:100025. http://dx.doi.org/10.1016/j.cmpbup.2021.100025

Chan J, Auffermann WF. Artificial Intelligence in the Imaging of Diffuse Lung Disease. *Radiol Clin North Am* 2022;**60(6)**:1033-40. http://dx.doi.org/10.1016/j.rcl.2022.06.014

Corbacho Abelaira MD, Corbacho Abelaira F, Ruano-Ravina A, Fernandez-Villar A. Use of Conventional Chest Imaging and Artificial Intelligence in COVID-19 Infection. A Review of the Literature. *Open Respiratory Archives* 2021;**3(1) (no pagination)**. http://dx.doi.org/10.1016/j.opresp.2020.100078

Fusco R, Grassi R, Granata V, Setola SV, Grassi F, Cozzi D, *et al.* Artificial Intelligence and COVID-19 Using Chest CT Scan and Chest X-ray Images: Machine Learning and Deep Learning Approaches for Diagnosis and Treatment. *Journal of Personalized Medicine* 2021;**11**(10):30. http://dx.doi.org/10.3390/jpm11100993

Ge C, Zhang L, Xie L, Kong R, Zhang H, Chang S. COVID-19 Imaging-based AI Research-A Literature Review. *Current Medical Imaging* 2022;**18(5)**:496-508. http://dx.doi.org/10.2174/1573405617666210902103729

Ghaderzadeh M, Aria M, Asadi F. X-Ray Equipped with Artificial Intelligence: Changing the COVID-19 Diagnostic Paradigm during the Pandemic. *BioMed Research International* 2021;**2021**:9942873. http://dx.doi.org/10.1155/2021/9942873

Ghaderzadeh M, Asadi F. Deep Learning in the Detection and Diagnosis of COVID-19 Using Radiology Modalities: A Systematic Review. *J Healthc Eng* 2021;**2021** (no pagination). http://dx.doi.org/10.1155/2021/6677314

Ghrabli S, Elgendi M, Menon C. Challenges and Opportunities of Deep Learning for Cough-Based COVID-19 Diagnosis: A Scoping Review. *Diagnostics* 2022;**12(9)** (no pagination). http://dx.doi.org/10.3390/diagnostics12092142

Gillman AG, Lunardo F, Prinable J, Belous G, Nicolson A, Min H, et al. Automated COVID-19 diagnosis and prognosis with medical imaging and who is publishing: a systematic review. *Physical and Engineering Sciences in Medicine* 2022;**45**(1):13-29. http://dx.doi.org/10.1007/s13246-021-01093-0

Harris M, Qi A, Jeagal L, Torabi N, Menzies D, Korobitsyn A, *et al.* A systematic review of the diagnostic accuracy of artificial intelligence-based computer programs to analyze chest x-rays for pulmonary tuberculosis. *PLoS ONE [Electronic Resource]* 2019;**14**(9):e0221339.

http://dx.doi.org/10.1371/journal.pone.0221339

Ito R, Iwano S, Naganawa S. A review on the use of artificial intelligence for medical imaging of the lungs of patients with coronavirus disease 2019. *Diagn Interv Radiol* 2020;**26**(5):443-8. http://dx.doi.org/10.5152/dir.2019.20294

Jia LL, Zhao JX, Pan NN, Shi LY, Zhao LP, Tian JH, et al. Artificial intelligence model on chest imaging to diagnose COVID-19 and other pneumonias: A systematic review and meta-analysis. *European Journal of Radiology Open* 2022;**9**:100438. http://dx.doi.org/10.1016/j.ejro.2022.100438

Karthik R, Menaka R, Hariharan M, Kathiresan GS. AI for COVID-19 Detection from Radiographs: Incisive Analysis of State of the Art Techniques, Key Challenges and Future Directions. *Irbm* 2022;**43(5)**:486-510. http://dx.doi.org/10.1016/j.irbm.2021.07.002

Khan FA, Pande T, Tessema B, Song R, Benedetti A, Pai M, et al. Computer-aided reading of tuberculosis chest radiography: Moving the research agenda forward to inform policy. Eur Respir J 2017;**50(1) (no pagination)**. http://dx.doi.org/10.1183/13993003.00953-2017

Komolafe TE, Cao Y, Nguchu BA, Monkam P, Olaniyi EO, Sun H, *et al.* Diagnostic Test Accuracy of Deep Learning Detection of COVID-19: A Systematic Review and Meta-Analysis. *Acad Radiol* 2021;**28(11)**:1507-23. http://dx.doi.org/10.1016/j.acra.2021.08.008

Kriza C, Amenta V, Zenie A, Panidis D, Chassaigne H, Urban P, *et al*. Artificial intelligence for imaging-based COVID-19 detection: Systematic review comparing added value of AI versus human readers. *Eur J Radiol* 2021;**145**:110028. http://dx.doi.org/10.1016/j.ejrad.2021.110028

Kufel J, Bargiel K, Kozlik M, Czogalik L, Dudek P, Jaworski A, *et al.* Application of artificial intelligence in diagnosing COVID-19 disease symptoms on chest X-rays: A systematic review. *Int J Med Sci* 2022;**19**(12):1743-52. http://dx.doi.org/10.7150/ijms.76515

Li Y, Zhang Z, Dai C, Dong Q, Badrigilan S. Accuracy of deep learning for automated detection of pneumonia using chest X-Ray images: A systematic review and meta-analysis. *Comput Biol Med* 2020;**123**:103898. http://dx.doi.org/10.1016/j.compbiomed.2020.103898

Lopez-Cabrera JD, Orozco-Morales R, Portal-Diaz JA, Lovelle-Enriquez O, Perez-Diaz M. Current limitations to identify covid-19 using artificial intelligence with chest x-ray imaging (part ii). The shortcut learning problem. *Health & Technology* 2021;**11**(6):1331-45. http://dx.doi.org/10.1007/s12553-021-00609-8

Montazeri M, ZahediNasab R, Farahani A, Mohseni H, Ghasemian F. Machine Learning Models for Image-Based Diagnosis and Prognosis of COVID-19: Systematic Review. *JMIR Medical Informatics* 2021;9(4):e25181. http://dx.doi.org/10.2196/25181

Negrini D, Danese E, Henry BM, Lippi G, Montagnana M. Artificial intelligence at the time of COVID-19: who does the lion's share? *Clin Chem Lab Med* 2022;**60**(12):1881-6. http://dx.doi.org/10.1515/cclm-2022-0306

Oloko-Oba M, Viriri S. A Systematic Review of Deep Learning Techniques for Tuberculosis Detection From Chest Radiograph. *Frontiers in Medicine* 2022;**9**:830515. http://dx.doi.org/10.3389/fmed.2022.830515

Rahmani AM, Azhir E, Naserbakht M, Mohammadi M, Aldalwie AHM, Majeed MK, *et al.* Automatic COVID-19 detection mechanisms and approaches from medical images: a systematic review. *Multimedia Tools & Applications* 2022;**81**(20):28779-98. http://dx.doi.org/10.1007/s11042-022-12952-7

Rezayi S, Ghazisaeedi M, Kalhori SRN, Saeedi S. Artificial Intelligence Approaches on X-ray-oriented Images Process for Early Detection of COVID-19. *Journal of Medical Signals & Sensors* 2022;**12**(3):233-53. http://dx.doi.org/10.4103/jmss.jmss_111_21

Santosh KC, Allu S, Rajaraman S, Antani S. Advances in Deep Learning for Tuberculosis Screening using Chest X-rays: The Last 5 Years Review. *J Med Syst* 2022;**46**(11):82. http://dx.doi.org/10.1007/s10916-022-01870-8

Sinwar D, Dhaka VS, Tesfaye BA, Raghuwanshi G, Kumar A, Maakar SK, *et al.* Artificial Intelligence and Deep Learning Assisted Rapid Diagnosis of COVID-19 from Chest Radiographical Images: A Survey. *Contrast Media Mol Imaging* 2022;**2022**:1306664. http://dx.doi.org/10.1155/2022/1306664

Tavaziva G, Harris M, Abidi SK, Geric C, Breuninger M, Dheda K, *et al.* Chest X-ray Analysis With Deep Learning-Based Software as a Triage Test for Pulmonary Tuberculosis: An Individual Patient Data Meta-Analysis of Diagnostic Accuracy. *Clin Infect Dis* 2022;**74**(8):1390-400. http://dx.doi.org/10.1093/cid/ciab639

Ting DSW, Tan TE, Lim CCT. Development and Validation of a Deep Learning System for Detection of Active Pulmonary Tuberculosis on Chest Radiographs: Clinical and Technical Considerations. *Clin Infect Dis* 2019;**69(5)**:748-50. http://dx.doi.org/10.1093/cid/ciy969

Wang L, Zhang Y, Wang D, Tong X, Liu T, Zhang S, *et al*. Artificial Intelligence for COVID-19: A Systematic Review. *Frontiers in Medicine* 2021;8 (no pagination). http://dx.doi.org/10.3389/fmed.2021.704256